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Abstract 

Background:  The prognosis of high grade serous ovarian cancer (HGSOC) patients is closely related to the immune 
microenvironment and immune response. Based on this, the purpose of this study was to construct a model to pre-
dict chemosensitivity and prognosis, and provide novel biomarkers for immunotherapy and prognosis evaluation of 
HGSOC.

Methods:  GSE40595 (38 samples), GSE18520 (63 samples), GSE26712 (195 samples), TCGA (321 samples) and GTEx 
(88 samples) were integrated to screen differential expressed genes (DEGs) of HGSOC. The prognosis related DEGs 
(DEPGs) were screened through overall survival analysis. The DEGs-encoded protein–protein interaction network was 
constructed and hub genes of DEPGs (DEPHGs) were generated by STRING. Immune characteristics of the samples 
were judged by ssGSEA, ESTIMATE and CYBERSORT. TIMER was used to analyze the relationship between DEPHGs and 
tumor-infiltrating immunocytes, as well as the immune checkpoint genes, finally immune-related DEPHGs (IDEPHGs) 
were determined, and whose expression in 12 pairs of HGSOC tissues and tumor-adjacent tissues were analyzed by 
histological verification. Furthermore, the chemosensitivity genes in IDEPHGs were screened according to GSE15622 
(n = 65). Finally, two prediction models of paclitaxel sensitivity score (PTX score) and carboplatin sensitivity score (CBP 
score) were constructed by lasso algorithm. The area under curve was calculated to estimate the accuracy of candi-
date gene models in evaluating chemotherapy sensitivity.

Results:  491 DEGs were screened and 37 DEGs were identified as DEPGs, and 11 DEPHGs were further identified. 
Among them, CXCL13, IDO1, PI3, SPP1 and TRIM22 were screened as IDEPHGs and verified in the human tissues. Fur-
ther analysis showed that IDO1, PI3 and TRIM22 could independently affect the chemotherapy sensitivity of HGSOC 
patients. The PTX score was significantly better than TRIM22, PI3, SPP1, IDO1 and CXCL13 in predicting paclitaxel 
sensitivity, so was CBP score in predicting carboplatin sensitivity. What’s more, both of the HGSOC patients with high 
PTX score or high CBP score had longer survival time.

Conclusions:  Five IDEPHGs identified through comprehensive bioinformatics analysis were closely related with the 
prognosis, immune microenvironment and chemotherapy sensitivity of HGSOC. Two prediction models based on 
IDEPHGs might have potential application of chemotherapy sensitivity and prognosis for patients with HGSOC.
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Introduction
Ovarian cancer (OC) is a common gynecological malig-
nancy, The 5-year survival rate of OC patients remains 
low because of the high heterogeneity of the tumor and 
high incidence of drug resistance during chemotherapy 
[1–5]. The standard treatment for OC is maximal cytore-
ductive surgery and postoperative paclitaxel-platinum 
combined chemotherapy, with a higher survival rate than 
other regimens, including cyclophosphamide-platinum/
gemcitabine and so on [6]. Most patients develop treat-
ment resistance after prolonged treatment, and almost 
all patients with recurrent ovarian cancer (ROC) even-
tually develop platinum resistance [7, 8]. But paclitaxel 
still keeps anti-tumorigenic activity for patients with 
platinum-resistant OC or platinum-resistant ROC [9]. In 
recent years, new immunotherapy strategies like immune 
checkpoint inhibitors therapy, cancer vaccine inoculation 
and adoptive immunotherapy have had a broad prospect 
for OC patients with platinum resistance in clinical treat-
ment. In addition, new immunotherapies such as chi-
meric antigen receptor T cells (CAR-T) and mesothelin 
(meso) have progressed into clinical trials for the treat-
ment of OC [10].

High grade serous ovarian cancer (HGSOC) is highly 
malignant and can easily metastasize to the abdominal 
cavity causing severe ascites and intestinal obstruction 
as the main type of epithelial OC, which occupies 70%-
80% of epithelial ovarian cancer deaths [11]. The clinical 
manifestations of HGSOC are atypical and lack of spe-
cific detection methods, and the five-year survival rate is 
only 15–25%, so it is urgent to develop precise treatment 
for HGSOC [12, 13].

Traditionally, clinical stage, the status of cytoreduc-
tive surgery and sensitivity to chemotherapeutic drugs 
are fundamental factors that predict the prognosis of 
patients with OC [14]. However, because ovarian can-
cer is a heterogeneous disease characterized by complex 
molecular and genetic changes, the survival rate and 
treatment response of cases with similar clinical features 
are very different, and it is more reasonable to judge the 
prognosis at the molecular biology level [15]. In recent 
years, a series of studies has confirmed that the expres-
sion level of genes in patients can significantly determine 
their long-term survival or recurrence after chemother-
apy, suggesting that crucial genes can be selected as bio-
markers to provide a reference for prognosis prediction 
and treatment choice of patients [16, 17].

The immune system plays an important regulatory 
role in the genesis and progression of OC, and the tumor 

immune reaction is closely correlated with the clinical 
efficacy and the outcome of OC cases. Eiichi Sato et  al. 
reported that tumor-infiltrating lymphocytes (TILs) 
in the immune microenvironment of ovarian cancer 
could assist in tumor cell removal [18]. Additionally, the 
increase in the ratio of CD8 + /CD4 + T lymphocytes 
could improve the overall survival rate of patients with 
OC [19]. Some DEGs in patients could participate in the 
regulation of immunocyte infiltration in ovarian cancer, 
leading to immune escape and adverse clinical outcome 
by promoting the production of cytokines and inhibiting 
the proliferation of effector T lymphocytes [20].

Activating immune reaction and destroying the pro-
liferation and invasion of OC have become a hot spot 
in clinical immunotherapy because of the close relation-
ship between OC malignant progression and immune 
escape mechanism. Immune destruction against tumor 
is a multi-step and coordinated process, which can take 
targeted regulation at several key points (immune check-
points) to induce the tumor rejection. Immune check-
point inhibitors (ICPIs) can prevent immune escape and 
induce the immune system to produce an anti-tumor 
response by blocking the activation of T lymphocytes 
surface checkpoint proteins, thus improving the efficacy 
of chemotherapy and effectively prolonging the survival 
time of tumor cases [21]. Now that the role of ICPIs in 
ovarian cancer is more moderate and changeable, the 
immunotherapy of ovarian cancer must comprehensively 
consider the immune suppressive network in the tumor 
microenvironment, as well as the inherent biological 
characteristics of the tumor that also plays a decisive role 
[22]. Accordingly, searching the differential expressed 
genes of ovarian cancer with a significant correla-
tion with tumor-infiltrating immunocytes and immune 
checkpoints, and exploring biomarkers that could pre-
dict the responsiveness of patients to different types of 
immunotherapy are of considerable significance, which 
contributes to choose the best combination therapy and 
reduce the side effects [23].

Therefore, this study intends to analyze the association 
between prognosis-related genes and tumor-infiltrating 
immunocytes, as well as immune checkpoint genes, in 
ovarian cancer through bioinformatics methods. Thus, 
the potential prognostic biomarkers that are closely asso-
ciated with the tumor immune response and curative 
effect can be explored, and scoring models can be con-
structed, providing potential markers for prognosis and 
chemotherapy sensitivity evaluation, as well as new valid 
targets to treat OC.

Keywords:  Ovarian cancer, Differentially expressed genes, Prognosis, Immune, Chemosensitivity
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Materials and methods
Microarray data
The Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) includes high-throughput sequenc-
ing data, gene chips, microarrays and other massive 
data information that users can download for free. We 
obtained three gene expression profiles (GSE40595, 
GSE18520 and GSE26712) from the GEO database. Three 
microarray datasets were integrated after removing batch 
effect using R-package “sva” (http://​www.​bioco​nduct​or.​
org.) [24]. Among them, GSE40595 included 32 HGSOC 
and 6 normal samples, GSE18520 contained 53 HGSOC 
and 10 normal samples, and GSE26712 included 185 
HGSOC and 10 normal samples [25–27].

Besides, we got GSE15622 dataset obtaining the infor-
mation about chemotherapy sensitivity of OC from GEO 
database, and it included 36 OC samples taking paclitaxel 
monotherapy and 29 OC samples taking carboplatin 
monotherapy [28].

TCGA is a highly reliable high-throughput database 
containing DNA, RNA and protein information from 
various human cancers [29]. Sequencing data and clini-
cal information of TCGA-OV 379 OC samples were 
obtained from UCSC database (http://​xenab​rowser.​
net/​hub/), and finally 321 HGSOC samples were incor-
porated after screening according to the clinical infor-
mation [30]. At the same time, we supplemented the 
sequencing data of 88 normal ovarian epithelial tissues 
through GTEx database, and took joint analysis with 
HGSOC samples from TCGA database [31].

Data processing
We used “limma” package (http://​www.​bioco​nduct​or.​
org.) to perform background correction and differential 
gene analysis respectively on chip data and transcrip-
tome high-throughput sequencing data [32]. We set adj. 
P < 0.05 and | logFC |> 1 as the cut-off criteria. Thus, we 
distinguished DEGs between HGSOC and normal sam-
ples in GSE40595, GSE18520 and GSE26712, as well as 
those in TCGA-OV and GTEx datasets. And we took the 
intersection of the above DEGs for subsequent analysis.

Volcano maps and heat maps were drawn to visual-
ize the results of DEGs analysis using “ggplot2” package 
(https://​ggplo​t2.​tidyv​erse.​org) and “pheatmap” package 
(https://​CRAN.R-​proje​ct.​org/​packa​ge=​pheat​map) [33]. 
The volcano map took the multiple of gene expression 
difference as the abscissa, and the logarithm of adj. P 
value as the ordinate, and can directly reflect the DEGs in 
two groups of samples through scatter diagram. The heat 
map reflected the data information in gene expression 
matrix by the change of color, and took clustering analy-
sis of abundance similarity among samples.

Survival analysis
We finally obtained 320 HGSOC cases with complete 
survival information out of 321 HGSOC cases from 
TCGA-OV database after screening the clinical infor-
mation. “Survival” package (https://​CRAN.R-​proje​ct.​
org/​packa​ge=​survi​val) was used for Kaplan–Meier 
survival analysis, and we set median single gene expres-
sion as the cut-off criteria to divide patients into high 
gene expression group and low gene expression group. 
Then we estimated the effect of single gene on overall 
survival (OS) rate in HGSOC patients and evaluated 
the survival curve by log-rank test. We set log rank 
P < 0.05 as the cut-off criteria. In addition, univariate 
COX regression analysis was used to calculate univari-
ate hazard ratio (HR) through "survival" package, and 
multivariate COX regression analysis was used to iden-
tify independent prognostic factors.

Clinical specimens collection and histological verification
Twelve pairs of tumor tissues and tumor-adjacent tis-
sues were collected in accordance with the Declara-
tion of Helsinki and legal regulations from HGSOC 
patients in the First Hospital of China Medical Univer-
sity. Tumor-adjacent tissue was defined as normal ovar-
ian tissue > 5  cm away from the tumor. The study was 
approved by the Ethics Committee of the First Hospi-
tal of China Medical University. The written informed 
consent has been obtained from each participant before 
specimen collection.

After crushing and grinding at low temperature, tis-
sue RNA extraction was performed according to the 
Trizol Reagent (Takara, Japan) protocol. RNA was 
reversely transcribed into cDNA according to the Mon-
Script™ rtIII All-in-One Mix with dsDNase (Monad, 
China) protocol. 2  μg total RNA of each sample was 
added to 40 μL reverse transcription reaction system. 
The temperature protocol of reverse transcription was 
as follows: 37 ℃ for 2  min to remove the contamina-
tion of genomic DNA, then 55 ℃ for 15 min and 85 ℃ 
for 5 min. The products were stored at − 20 ℃. Relative 
mRNA expression levels were detected by real-time 
quantitative PCR (RT-qPCR) using SYBR® Premix Ex 
TaqTM II (Takara, Japan).

A standard three-step real-time PCR program was 
used with an annealing temperature of 58℃ and 40 
cycles of amplification. β-actin was selected as the 
internal reference. All of the RT-qPCR curves were with 
single peak. The relative quantification in RT-qPCR was 
calculated by 2-Δct method. P < 0.05 was considered to 
imply significant results. The sequences of primers 
were listed in the Additional file 5: Table S5.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org
http://www.bioconductor.org
http://xenabrowser.net/hub/
http://xenabrowser.net/hub/
http://www.bioconductor.org
http://www.bioconductor.org
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
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Prognostic PPI network construction and core module 
identification
The Search Tool for the Retrieval of Interacting Genes 
(STRING, https://​string-​db.​org/) is an online tool to ana-
lyze protein interactions in multiple ways [34]. First, we 
used the tool to establish the protein–protein interaction 
(PPI) network of DEGs intersection and search for inter-
acting genes. Then, we visualized the PPI network using 
MCODE plug-in from Cytoscape software and identi-
fied core modules [35]. MCODE’s (molecular complex 
detection) main function is clustering in protein network 
and building functional modules, which can find out the 
closely-associated areas that may represent highly func-
tion-related molecular complexes according to the con-
nection of each node in PPI network.

ssGSEA, ESTIMATE and CYBERSORT
We collected 29 immune related gene sets from published 
literatures, and among them there were 569 immune 
related genes involved (Additional file 1: Table S1) [36–
38]. “GSVA” package (http://​www.​biome​dcent​ral.​com/​
1471-​2105/​14/7) uses single sample gene set enrichment 
analysis (ssGSEA) to calculate rank value of every gene 
from expression profiles and quantify the enrichment 
fraction of each immune related gene in a single sam-
ple, which can help judge the activity of immune cells, 
immune function or immune pathway of each sample 
[39].

The "ESTIMATE" package (https://R-​Forge.R-​proje​
ct.​org/​proje​cts/​estim​ate/) is also based on the ssGSEA 
principle to assess the stroma content, the proportion of 
immune cells and the purity of the tumor in every single 
sample, which is mutually verified with the results of the 
"GSVA" package [40].

CYBERSORT is an analytical tool developed by New-
man et al., which can deconvolute the expression matri-
ces based on the known reference sets to estimate the 
abundance of different types of immune cells in the 
mixed cell population [41]. The expression matrix is ana-
lyzed by CYBERSORT through "e1071" package (http://​
cran.r-​proje​ct.​org/​web/​packa​ges/​e1071/​index.​html), and 
the results are visualized through "pheatmap", "vioplot" 
and "corrplot" packages.

Correlation analysis among hub gene expression 
and immunocyte infiltration, as well as immune 
checkpoints
TIMER (https://​cistr​ome.​shiny​apps.​io/​timer/), which 
can be applied to analyze tumor immune relevance, was 
used to analyze the correlation between gene expres-
sion from high-throughput sequencing dataset of serous 
ovarian cancer in TCGA-OV and six tumor infiltrating 

immunocytes (B lymphocytes, CD8 + T lymphocytes, 
CD4 + T lymphocytes, neutrophils, macrophages and 
dendritic cells), as well as five immune checkpoint genes 
(PDCD1, CD274, CTLA4, HAVCR2 and TOX) [42]. Sig-
nificance levels were set at the 5% level.

Furthermore, CYBERSORT was used to verify the 
results of TIMER.

Gene set enrichment analysis (GSEA)
The sequencing data of 321 HGSOC samples from 
TCGA-OV database were divided into two groups 
according to the median of single gene expression level. 
The enrichment scores (ES) of pathway-related gene 
sets in each group were calculated by GSEA software 
(4.1.0), and reflected the degree to which a given gene 
set is represented in a ranked list of genes [43]. We 
choose adj.P < 0.05 and top 20 signaling pathway rank as 
threshold.

Identification of genes related to chemosensitivity 
of paclitaxel / carboplatin in HGSOC patients
We divided patients from GSE15622 into paclitaxel 
resistant group, paclitaxel sensitive group, carboplatin 
resistant group and carboplatin sensitive group according 
to their clinical information, and respectively extracted 
the expression levels of single gene (CXCL13, IDO1, PI3, 
SPP1 and TRIM22) in the expression profile and then 
screened the DEGs between groups. Finally, we visual-
ized the data using “ggplot2” package (https://​ggplo​t2.​
tidyv​erse.​org).

Gene ontology (GO) analysis
GO analysis is widely used in the field of bioinformat-
ics, covering three aspects of biology: cellular compo-
nents (CC), molecular function (MF), and biological 
processes (BP). Through GO analysis, it is possible to 
understand the biological functions of DEGs enrich-
ment. The "limma" package was used to screen the DEGs 
between groups, the "clusterProfiler" package was used 
for GO enrichment analysis [44], and the "enrichplot" 
and "ggplot2" packages were used to visualize the results.

Construction of PTX score model and CBP score model
We chose GSE15622 dataset to screen genes incorpo-
rated in models from CXCL13, IDO1, PI3, SPP1 and 
TRIM22 using lasso algorithm by “glmnet” package, and 
calculated the corresponding coefficients [45]. The "glm-
net" package uses the cyclic coordinate descent method 
to achieve the final lasso regression model, and each 
parameter included is optimized and cycled while keep-
ing the other parameters fixed until the coefficient is sta-
ble. Lasso algorithm can filter out variables and optimize 
the complexity of the model. Variable filtering refers to 

https://string-db.org/
http://www.biomedcentral.com/1471-2105/14/7
http://www.biomedcentral.com/1471-2105/14/7
https://R-Forge.R-project.org/projects/estimate/
https://R-Forge.R-project.org/projects/estimate/
http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/e1071/index.html
https://cistrome.shinyapps.io/timer/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org


Page 5 of 19Zhang et al. Cancer Cell Int          (2021) 21:593 	

including variables selectively into the model to get bet-
ter performance parameters. Complexity adjustment is 
to adjust the model complexity through changing a series 
of parameters to avoid overfitting. Finally, the lasso algo-
rithm can simplify the model and get the optimal calcula-
tion formula.

Thus, we could get PTX score model and CBP score 
model from expression profile data and corresponding 
single gene coefficients, and the formula was as follows:

N is the number of included genes, Coef(i) is the coef-
ficient, X(i) is the gene expression level.

Evaluation of the chemotherapy sensitivity of PTX score 
and CBP score
Firstly, we compared the differences of PTX score 
between paclitaxel resistant group and paclitaxel sensi-
tive group, and differences of CBP score between car-
boplatin resistant group and carboplatin sensitive group 
according to the clinical information. Secondly, we 
divided patients into groups based on the median value 
of PTX score or CBP score, and calculated the percent-
ages of drug-resistant and drug-sensitive groups alone. 
Finally, we used GraphPad Prism 8 software to draw and 
visualize ROC curve, calculated the area under curve 
(AUC) and estimated the accuracy of candidate gene 
models in evaluating chemotherapy sensitivity.

Evaluation of the prognostic value of PTX score and CBP 
score
We calculated the PTX score and CBP score of 320 
HGSOC samples with complete survival information 
from TCGA-OV database using the formula in "Evalu-
ation of the chemotherapy sensitivity of PTX score and 
CBP score" section, and we used “survival” package 
for Kaplan–Meier survival analysis. The patients were 
divided into two groups according to the median score. 
Then we evaluated the influence of score on HGSOC 
patients’ overall survival (OS) rate, and the criterion was 
same as "Survival analysis" section.

Statistical methods
The data were analyzed statistically by R Studio (Version 
3.7.0), Perl (Version 5.28.1) and GraphPad Prism (Ver-
sion 8.0.2.263). Student t test and Wilcoxon signed rank 
test were used to analyze the differences between the two 
groups. And the correlation was analyzed by Spearman-
rank correlation. P < 0.05 was considered to be statisti-
cally significant.

Score =

n∑

i=1

Coef (i)X(i)

Results
Identification of DEGs in HGSOC by the microarray 
database
The study design was illustrated in Additional file  6: 
Fig.S1. According to the three gene expression pro-
files of GSE18520, GSE26712 and GSE40595 and two 
datasets of TCGA and GTEx, the chip dataset and 
high-throughput sequencing dataset containing both 
normal ovarian epithelium and HGSOC samples were 
respectively obtained. Volcano maps (Fig. 1a) were con-
structed to reflect the distribution of DEGs in GEO and 
TCGA + GTEx datasets, and heat maps (Fig.  1b) were 
constructed to indicate the expression of genes and 
clustering results in samples. After a series of analyses, 
we screened 320 and 3,835 HGSOC high expression 
genes and 643 and 3,944 low expression genes from the 
GEO and TCGA + GTEx datasets, respectively. After 
taking the intersection  491 genes displayed a consist-
ent expression trend in two profiles. These genes could 
be subdivided into two parts: 245 (Fig. 1c) that showed 
high expression and 246 (Fig.  1d) that showed low 
expression in HGSOC tissue.

Identification of prognosis‑related DEGs and construction 
of PPI network and core module
The gene expression profiles and survival informa-
tion of 320 HGSOC cases in TCGA-OV dataset were 
integrated according to 491 DEGs in "Identification of 
DEGs in HGSOC by the microarray database" section. 
And among them 37 genes could influence the overall 
survival (OS) rate by Kaplan–Meier analysis (P < 0.05) 
(Additional file  2: Table  S2). We mapped the PPI net-
work of 37 genes and multiple sub-networks were 
obtained after clustering the PPI network (Fig. 2a). We 
screened and visualized the core module that ranked 
first according to the number of nodes, the number 
of sides and the score value (Fig.  2b). This module 
included 11 proteins and had a closer interaction than 
others, which might influence the genesis and progno-
sis of HGSOC as a critical protein complex or a func-
tion module.

Eleven genes encoding core module proteins were 
used as hub genes, and survival curve was drawn 
according to the information of TCGA-OV database 
(Fig. 2c–m). The results showed that low expression of 
CXCL13, CXCR4, FGF13, IDO1, SPP1 and TRIM22 in 
HGSOC was associated with decreased overall survival 
rate of patients, and the high expression of KIT, LYVE1, 
PI3, SLC2A1 and SNCA had a connection with the 
decreased overall survival rate of patients.
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Analysis about tumor‑infiltrating immunocytes 
and immune functional features
We used ssGSEA to analyze and visualize the immune 
infiltrating cells and immune functional features from 
normal ovarian epithelium and HGSOC samples in 
TCGA + GTEx cohort(left) and GEO cohort(right) 
(Fig. 3a). The differences of immune cells scores, stroma 
scores, immune infiltrating cells, immune functions 
and activities of pathways between normal samples and 
HGSOC samples could be directly observed, and it was 
more obvious in TCGA + GTEx cohort.

We found that the infiltration of dendritic cells (DCs), 
activated dendritic cells (aDCs), immature dendritic cells 
(iDCs), plasmacytoid dendritic cells (pDCs), CD8 + T 
cells and Th1 cells generally increased while the infil-
tration of B cells decreased when further compared the 
immune infiltrating cells, immune functions and activi-
ties of pathways between normal samples and HGSOC 
samples in two cohorts (Fig.  3b). Similarly, the immune 

functions or activities of pathways including the APC co-
suppression, APC co-stimulation, immune checkpoints, 
parainflammation and I-type IFN reaction enhanced in 
HGSOC samples (Fig. 3c).

Fig.S2a showed the proportion of 22 kinds of immune 
cells in each sample. Finally, we integrated the results of 
ssGSEA and CYBERSORT analysis, and found that the 
dendritic cells infiltration was consistently increased in 
HGSOC samples (Fig.S2b).

Correlation analysis among prognosis‑related hub genes 
and tumor‑infiltrating immunocytes, as well as immune 
checkpoints
Previous studies confirmed that immune system played 
an important part in the genesis, progression, progno-
sis and treatment of ovarian cancer. We found that the 
immunocyte infiltration, immune functions and related 
activities of pathways of HGSOC patients greatly changed 
from "Analysis about tumor-infiltrating immunocytes 

Fig. 1  Identification of DEGs in HGSOC by the microarray database. a Gene expression profile volcano map. The longitudinal dotted line represents 
the cut-off value of ∣logFC∣ = 1, and the horizontal dotted line represents the cut-off value of adj. P = 0.05. The red colors are high expression genes 
of HGSOC, and the blue colors are low expression genes of HGSOC. TCGA: n = 321, GTEx: n = 88, GEO: n = 296 (cancer: 270, normal: 26). b Gene 
expression profile heat map. The red color is high expression, and the blue color is low expression. The horizontal axis is the clustering result. c Venn 
map of upregulated DEGs of HGSOC. d Venn map of downregulated DEGs of HGSOC
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Fig. 2  Identification of prognosis-related DEGs. a Prognosis-related DEGs PPI network constructed by STRING. Different colors represent the 
preliminary clustering by STRING according to protein functions. b Core module after further clustering the PPI network by MCODE. The area of 
the circle represents the closeness of the connection between each node and other nodes, and the more connections, the larger the area of the 
circle. c–m. Survival curves of hub genes by KM analysis (n = 320). The horizontal axis is time, and the longitudinal axis is the overall survival rate of 
corresponding time. The red color represents the group of genes with high expression, and the blue color represents the group of genes with low 
expression. c CXCL13; d CXCR4; e FGF13; f IDO1; g KIT; h LYVE1; i PI3; j SLC2A1; k SNCA; l SPP1; m TRIM22
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Fig. 3  Tumor-infiltrating immunocytes and immune functional features of the cohorts. a Immune characteristic heat maps of TCGA + GTEx 
cohort(left) and GEO cohort (right). TCGA: n = 321, GTEx: n = 88, GEO: n = 296 (cancer: 270, normal: 26). Tumor purity, ESTIMATE total score, immune 
cell score, stroma score, immune infiltrating cells, immune function and pathway activity of every single sample are annotated by color depth. b 
Comparation of immune infiltrating cells between normal ovarian epithelium samples (green) and HGSOC samples (yellow) in TCGA + GTEx cohort 
(left) and GEO cohort (right). The Boxes horizontal line represents the median value, and the top line and bottom line represent the 25th and 75th 
percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The differences were analyzed by Wilcoxon signed 
rank test (*, P < 0.05; **, P < 0.01; ***, P < 0.0001). c Comparations of immune functions and pathway activities between normal ovarian epithelium 
samples (green) and HGSOC samples (yellow) in TCGA + GTEx cohort (left) and GEO cohort (right), and the annotation is same as b 
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and immune functional features"  part. Thus, we took 
further correlation analysis among HGSOC prognosis-
related genes from "Identification of prognosis-related 
DEGs and construction of PPI network and core mod-
ule" part and tumor-infiltrating immunocytes, as well as 
immune checkpoints.

According to the expression profile of serous OC sam-
ples from TCGA database, we analyzed the relevance 
between the expressions of 11 genes including CXCL13 
and the contents of immune infiltrating cells like B cells, 
CD8 + T cells and so on from samples (Additional file 3: 
Table  S3). Further, the analysis of the expression col-
linearity between 11 genes and 5 immune checkpoint 

genes including PDCD1, CD274, CTLA4, HAVCR2 and 
TOX was made (Additional file 4: Table S4). We screened 
CXCL13, IDO1, PI3, SPP1 and TRIM22 in all with the 
strongest correlation with HGSOC immune infiltrat-
ing cells and immune checkpoints according to related 
coefficients and P values (Tables 1, 2), and visualized the 
results by scatter diagram (Fig. 4a, b).

In addition to TIMER analysis, CYBERSORT was 
used to analyze the relationship between five genes and 
immune infiltrating cells in TCGA-HGSOC. The results 
showed that CXCL13 had a certain linear relationship 
with CD8 + T cells and CD4 + T cells. IDO1 and B cells, 
CD8 + T cells, CD4 + T cells; PI3 and neutrophils; SPP1 

Table 1  The results of relevance analysis between DEPHGs of HGSOC and immunocytes (top five)

* The bold fonts in Table 1 indicate significant correlations between hub genes and immune infiltrating cells (P < 0.05). The correlation degree is judged by the 
correlation coefficient cor. Positive cor means a positive correlation and negative cor means a negative correlation. The closer the absolute value of cor is to 1, the 
stronger the correlation is

Variable B Cell CD8 + T Cell CD4 + T Cell Macrophage Neutrophil Dendritic Cell

CXCL13 Partial cor 0.110 0.339 0.308 0.058 0.371 0.358
P.value 0.016 0.000 0.000 0.201 0.000 0.000

IDO1 Partial cor 0.251 0.472 0.185 − 0.013 0.502 0.425
P.value 0.000 0.000 0.004 0.835 0.000 0.000

PI3 Partial cor − 0.029 − 0.029 0.071 − 0.033 0.224 0.083

P.value 0.520 0.529 0.123 0.472 0.000 0.069

SPP1 Partial cor 0.048 0.143 0.208 0.268 0.473 0.355
P.value 0.289 0.002 0.000 0.000 0.000 0.000

TRIM22 Partial cor 0.288 0.401 0.105 0.213 0.473 0.404
P.value 0.000 0.000 0.022 0.000 0.000 0.000

Table 2  The results of relevance analysis between 5 gene expressions and immune checkpoint expressions

* The annotation is same as Table 1

Variable PDCD1 CD274 CTLA4 HAVCR2 TOX

CXCL13 Cor 0.666 0.517 0.764 0.580 − 0.013

P.value 0.000 0.000 0.000 0.000 0.816

IDO1 Cor 0.436 0.538 0.505 0.418 − 0.077

P.value 0.000 0.000 0.000 0.000 0.180

PI3 Cor 0.229 0.105 0.214 0.238 − 0.176
P.value 0.000 0.068 0.000 0.000 0.002

SPP1 Cor 0.301 0.354 0.455 0.720 − 0.207
P.value 0.000 0.000 0.000 0.000 0.000

TRIM22 Cor 0.475 0.739 0.615 0.630 − 0.045

P.value 0.000 0.000 0.000 0.000 0.438

Fig. 4  Correlation analysis among prognosis-related hub genes and immune features. a Visualization of correlation analysis results between five 
genes and immune infiltrating cells. The vertical axises are CXCL13, IDO1, PI3, SPP1 and TRIM22 from top to bottom; From left to right the horizontal 
axises are tumor purity, B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils and dendritic cells. b Visualization of correlation analysis 
results between five genes and immune checkpoint gene expressions. The vertical axises are CXCL13, IDO1, PI3, SPP1 and TRIM22 from top to 
bottom. The horizontal axises are PDCD1, CD274, CTLA4, HAVCR2 and TOX from left to the right. TIMER website includes 303 samples from TCGA​

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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and CD4 + T cells, neutrophils, dendritic cells; TRIM22 
and CD8 + T cells, CD4 + T cells, macrophages and other 
immune cells were consistent with TIMER results (Fig.
S2c). It is suggested that CXCL13, IDO1, PI3, SPP1 and 
TRIM22 were closely related to the immune process of 
HGSOC.

The results indicated that CXCL13, IDO1, PI3, SPP1 
and TRIM22 played significant roles in the immune pro-
cess of HGSOC, which could participate in a variety of 
immunocytes infiltration and were closely related to the 
gene expressions of immune checkpoints. Especially the 
co-expression between CXCL13 and immune checkpoint 
CTLA4, the co-expression between SPP1 and immune 
checkpoint HAVCR2, as well as the co-expression 
between TRIM22 and immune checkpoint CD274 were 
strong (cor > 0.7) (Table 2; Fig. 4b).

Histological verification of CXCL13, IDO1, PI3, SPP1, 
TRIM22
Compared with the paracancerous tissues, the expres-
sion of CXCL13(P = 0.0093), IDO1(P = 0.0068), 
PI3(P = 0.0161), SPP1(P = 0.0122) in tumor tissues was 
significantly increased, while TRIM22(P = 0.0342) was 
significantly decreased. These results were consistent 
with the bioinformatics analysis (Fig. 5).

GSEA analysis of CXCL13, IDO1, PI3, SPP1, TRIM22
The results of GSEA analysis revealed that CXCL13 
was enriched in the pathways of antigen processing and 
presentation, natural killer cell mediated cytotoxicity, 
chemokine signaling, et al. (Fig. 6a). IDO1 was enriched 
in the pathways of natural killer cell mediated cytotoxic-
ity, antigen processing and presentation, et  al. (Fig.  6b). 
PI3 was enriched in the pathways of antigen processing 
and presentation, toll like receptor signaling (Fig.  6c). 
SPP1 was enriched in the pathways of chemokine sign-
aling, natural killer cell mediated cytotoxicity, et  al. 
(Fig.  6d). TRIM22 was enriched in the pathways of 
chemokine signaling, T cell receptor signaling, natural 
killer cell mediated cytotoxicity, et al. (Fig. 6e).

Correlation analysis of CXCL13, IDO1, PI3, SPP1, TRIM22 
with clinicopathological features and prognosis
According to the clinical information of patients in 
TCGA-OV database, the correlation analysis between 
the expression of five genes and the clinicopathologi-
cal features of HGSOC showed that the expression of 
residual genes had no significant correlation with clinical 
stage and grade status, except that the patients with high 
expression of SPP1 were more prone to lymphatic inva-
sion (Additional file 8: Fig.S3a–c).

Fig. 5  Histological verification. RT-qPCR results in the 12 pairs of HGSOC tissues and tumor-adjacent tissues showing the decreased expression of 
CXCL13 (a), IDO1 (b), PI3 (c), SPP1 (d), and the elevated expression of TRIM22 (e) in HGSOC tissues. Red points represent the HGSOC tissues and blue 
points represent the paired paracancerous ovarian tissues. Significance is determined by Student t test
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Consistent with the results of KM analysis in "Identi-
fication of prognosis-related DEGs and construction of 
PPI network and core module" section, COX regression 
analysis suggested that CXCL13, IDO1, SPP1, TRIM22 

were protective factors for the prognosis of HGSOC 
patients, while PI3 was a risk factor (Additional file 8: Fig.
S3d).

Fig. 6  GSEA analysis. Enrichment immune-related pathways of CXCL13 (a), IDO1 (b), PI3 (c), SPP1 (d), TRIM22 (e) (n = 321). The vertical axis 
represents ES, while the horizontal axis represents the gene set distribution. The GSEA software estimates the statistical significance (nominal P 
value) of the ES by using an empirical phenotype-base permutation test procedure and adjust the estimated significance level of account for 
multiple hypothesis [43]
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Analysis based on chemotherapy sensitivity of tumor 
immune‑related genes
We divided patients from GSE15622 dataset into pacli-
taxel resistant group (PR), paclitaxel sensitive group (PS), 
carboplatin resistant group (CR) and carboplatin sen-
sitive group (CS) according to their information about 
chemotherapy sensitivity, The results of GO analysis 
showed that there were some degrees of immune activa-
tion both in two chemosensitive groups. For example, the 
processes of leukocyte migration, regulation of leukocyte 
migration were enriched in PS group (Additional file  9: 
Fig.S4a), while the processes of neutrophil degranulation, 
neutrophil activation, neutrophil mediated immunity 
were enriched in CS group (Additional file 9: Fig.S4c).

Furthermore, we compared the expressions of 
CXCL13, IDO1, PI3, SPP1 and TRIM22 between groups. 
The results showed that TRIM22 was significantly dif-
ferent between PR and PS group (Fig.  7e), while the 

expressions of IDO1 and PI3 were significantly different 
between CR and CS group (Fig. 7b, c). And it indicated 
that single gene expression of IDO1, PI3 and TRIM22 
could influence the chemotherapy sensitivity of ovarian 
cancer patients. Patients with high expression of TRIM22 
might be more sensitive to paclitaxel, while patients with 
low expression of IDO1 and PI3 might be more sensitive 
to carboplatin.

Application evaluation of prediction models PTX score 
and CBP score
We found that single gene expressions of IDO1, PI3 and 
TRIM22 could influence the chemotherapy sensitivity of 
OC patients in "Analysis based on chemotherapy sensi-
tivity of tumor immune-related genes" section. At the 
same time, the previous analysis of the study showed 
that the coding proteins of CXCL13, IDO1, PI3, SPP1 
and TRIM22 had a strong potential relevance. And they 

Fig. 7  Correlation analysis between tumor immune-related genes and chemotherapy sensitivity. Comparation of single gene expression between 
paclitaxel resistant group (n = 12) and paclitaxel sensitive group (n = 24) in ovarian cancer patients (left), and the comparation of single gene 
expression between carboplatin resistant group (n = 11) and carboplatin sensitive group (n = 18) (right). a CXCL13; b IDO1; c PI3; d SPP1; e TRIM22
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were all closely related to the immunocyte infiltration 
and immune checkpoints of HGSOC. Thus, the scoring 
model based on the gene expressions of CXCL13, IDO1, 
PI3, SPP1 and TRIM22 from GSE15622 dataset and con-
structed by lasso algorithm could better predict the sen-
sitivity of ovarian cancer patients to chemotherapeutic 
drugs than which based on single gene.

The construction of PTX score prediction model 
according to gene expression profiles of patients with 
paclitaxel treatment from GSE15622 was as follows:

We calculated PTX scores in every sample and found 
it had a significant difference between PR group and 
PS group. The PTX scores were generally higher in 
PS group (Fig.  8b). Besides, the percentage of patients 

PTXscore = −0.41× IDO1− 0.57× PI3+ 0.18× SPP1+ 0.83× TRIM22

who were sensitive to paclitaxel treatment in high-PTX 
score group was greatly increased when patients were 
divided into high-PTX score group and low-PTX score 
group according to the median value (Fig.  8c). The 
AUC of ROC curve showed that the accuracy of judg-
ing sensitivity of patients to paclitaxel by PTX score 
(AUC = 0.747) was higher than those by the expres-
sion of single gene including TRIM22 (AUC = 0.715), 
PI3 (AUC = 0.625), SPP1 (AUC = 0.635), IDO1 
(AUC = 0.590) and CXCL13 (AUC = 0.507) (Fig. 8d, e). 

Then we calculated PTX scores of 320 HGSOC cases in 
TCGA-OV database according to the model and found 
that the overall survival rate of high-PTX score group 
increased significantly (Fig. 8f ).

Fig. 8  PTX score paclitaxel sensitivity prediction model. a Gene coefficients of PTX score paclitaxel sensitivity prediction model. b Comparation 
of PTX scores between paclitaxel resistant group (blue) and paclitaxel sensitive group (yellow). c Proportions of paclitaxel resistant (orange) and 
sensitive (green) patients in high PTX score group and low PTX score group. d ROC curves of paclitaxel sensitivity in ovarian cancer patients 
evaluated by TRIM22 (black), PI3 (green), SPP1 (purple), IDO1 (blue) and CXCL13 (yellow). The larger the AUC, the more accurate the judgment. 
e ROC curve of paclitaxel sensitive in ovarian cancer patients evaluated by PTX score (red). f Survival curves by KM analysis of PTX score in TCGA 
database (n = 320). The horizontal axis is the time, and the longitudinal axis is the overall survival rate of corresponding time. The red color 
represents high PTX score group and blue color represents low PTX score group
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Next, the construction of CBP score prediction model 
according to gene expression profiles of patients with 
carboplatin treatment from GSE15622 was as follows:

We calculated CBP scores in every sample and found 
it had a significant difference between CR and CS 
group. The CBP scores were generally higher in CS 
group (Fig. 9b). Besides, the percentage of patients who 
were sensitive to carboplatin treatment in high-CBP 
score group was greatly increased when patients were 
divided into high-CBP score group and low-CBP score 
group according to the median value (Fig.  9c). The 
AUC of ROC curve showed that the accuracy of judg-
ing sensitivity of patients to carboplatin by CBP score 
(AUC = 0.830) was higher than those by the expression 

CBPscore = 1.01×CXCL13−1.82×IDO1−1.10×PI3−0.14×SPP1−1.18×TRIM22

of single gene including TRIM22 (AUC = 0.601), 
PI3 (AUC = 0.722), SPP1 (AUC = 0.707), IDO1 
(AUC = 0.692) and CXCL13 (AUC = 0.520) (Fig. 9d, e). 

Then we calculated CBP scores of 320 HGSOC cases in 
TCGA-OV database according to the model and found 
that the overall survival rate of high-CBP score group 
increased significantly (Fig. 9f ).

Univariate and multivariate COX regression analy-
sis showed that age, residual tumor lesion, CBP score 
and PTX score were independent prognostic factors for 
HGSOC patients (Additional file  9: Fig.S4e). Patients 
older than 70 years, HGSOC residual lesions larger than 
1 cm, low CBP score, and low PTX score were more likely 
to have poor prognosis (Additional file 9: Fig.S4f ).

Fig. 9  CBP score carboplatin sensitivity prediction model. a Gene coefficients of CBP score carboplatin sensitivity prediction model. b Comparation 
of CBP scores between carboplatin resistant group (blue) and carboplatin sensitive group (yellow). c Proportions of carboplatin resistant (orange) 
and sensitive (green) patients in high CBP score group and low CBP score group. d ROC curves of carboplatin sensitivity in ovarian cancer patients 
evaluated by TRIM22 (black), PI3 (green), SPP1 (purple), IDO1 (blue) and CXCL13 (yellow). The larger the AUC, the more accurate the judgment. 
e ROC curve of carboplatin sensitive in ovarian cancer patients evaluated by CBP score (red). f Survival curves by KM analysis of CBP score in 
TCGA database (n = 320). The horizontal axis is the time, and the longitudinal axis is the overall survival rate of corresponding time. The red color 
represents high CBP score group and blue color represents low CBP score group
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The above results confirmed that two models based 
on the gene expressions of CXCL13, IDO1, PI3, SPP1 
and TRIM22 could be applied to predict the sensitivity 
of HGSOC patients to paclitaxel and carboplatin, and 
they had great judgment value. Meanwhile, the overall 
survival rate of patients from high chemotherapy sensi-
tivity group was higher, which indicated that PTX score 
and CBP score could be well used to predict the chemo-
therapy sensitivity and prognosis risk of ovarian cancer 
patients.

Discussion
Ovarian cancer is a common gynecological tumor along 
with poor prognosis, the outcome of which is associated 
with immunocyte infiltration. Difficulty in early diagno-
sis and the recurrence because of resistance to chemo-
therapy generally makes the high mortality of ovarian 
cancer patients. HGSOC is usually treated with surgical 
resection combined with chemotherapy of paclitaxel and 
carboplatin (bevacizumab is added in some cases) as the 
most common subtype of epithelial ovarian cancer [12]. 
HGSOC often happens to elderly women in advanced 
stage of FIGO, and they intend to develop drug resist-
ance with time passing by, which leads to a bad outcome 
although chemotherapeutic drugs work well in the initial 
stage.

The poor prognosis of HGSOC is correlated with 
immunocyte infiltration and immunotherapy, but the 
research about comprehensive analysis of these three 
aspects is rare. Our study screened HGSOC prognosis-
related genes and explored whether they were equally 
important in tumor immune response and treatment. 
Finally, we got prognostic markers with potential appli-
cation value and could also be used as immunotherapy 
molecular targets of HGSOC. At the same time, score 
models based on these target genes could effectively 
assess the chemosensitivity and prognosis of patients.

First, we got 491 DEGs of HGSOC from GEO, TCGA 
and GTEx databases, and after prognosis analysis we 
found 37 genes could influence overall survival rate 
of patients. And we screened one core module which 
included 11 hub genes by PPI to get potential molecular 
complex. What’s more, the analysis about immune char-
acteristics of HGSOC samples showed that immune infil-
trating cells, immune functions and activities of pathways 
changed greatly compared to normal ovarian epithelium, 
especially the increase of immune infiltration of dendritic 
cells and the enhanced activity of APC function and 
immune checkpoints.

Immunocytes play an essential role in tumor tissue, 
and an increasing number of studies has shown that they 
also have clinicopathological significances in predict-
ing prognosis and efficacy [46, 47]. Immune checkpoint 

inhibitors (ICPIs) can prevent immune escape of tumor 
and reactivate the immune system to produce an anti-
tumor response by destroying important targets in the 
process of tumor immune tolerance. The past stud-
ies suggested that samples of tumor patients who were 
reactive to PD1 immune checkpoint inhibitors usually 
had higher densities of CD3 + T cells, CD8 + T cells and 
PD-1 + T cells in both invasive margin and center of 
tumor [48]. Some researchers also found that high level 
infiltration of CD8 + TILs in HGSOC stroma was associ-
ated with higher overall survival rate [49]. Thus, we took 
further immune evaluation about immune checkpoints 
and immune infiltrating cells according to 11 hub genes. 
The results showed that CXCL13, IDO1, PI3, SPP1 and 
TRIM22 could participate in a variety of immunocytes 
infiltration and were closely related to the gene expres-
sions of immune checkpoints.

In particular, CXCL13 and immune checkpoint CTLA, 
SPP1 and immune checkpoint HAVCR2, as well as 
TRIM22 and immune checkpoint CD274 showed strong 
collinear expression. It also indicated that these five 
genes played significant roles in the immune process of 
HGSOC as potential immunotherapy molecular targets. 
What’s more, the results of RT-qPCR verified the results 
of DEGs analysis of public databases. At the same time, 
single-gene GSEA results showed that the five genes were 
closely related the immune-related pathways of antigen 
processing and presentation, T cell receptor signaling 
and so on.

Lo et  al. have reported that the densities of CD3 + T 
cells, CD8 + T cells and PD-1 + T cells increased in 
HGSOC after chemotherapy of platinum, and the 
increase of these T cell subtypes was associated with 
the presence of immunocytes before treatment, which 
suggested that platinum chemotherapy could induce 
expected immune reaction if the necessary immuno-
cytes had already been in the tumor [49]. These studies 
indicated that the chemosensitivity of HGSOC patients 
was closely related to the cancer immune microenviron-
ment. According to the dataset expression profiles from 
GSE15622 and information of patients’ sensitivity to 
chemotherapeutic drugs, our analysis found that patients 
with high expression of TRIM22 were more sensitive to 
paclitaxel, while patients with low expression of IDO1 
and PI3 were more sensitive to carboplatin.

At present, the roles of CXCL13, IDO1 and SPP1 
in immune process of tumor have been studied. As a 
chemokine, CXCL13 binds to its homologous receptor 
CXCR5, participates in the migration and recruitment 
of lymphocytes, which helps to enhance the immune 
response of tumor host [50, 51]. CXCL13 could enhance 
the effectiveness of PD-1 blocking therapy in ovar-
ian cancer [52]. IDO1 can induce the production of 
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immunosuppressive molecule Tregs by inhibiting the 
function of T cells, and then produce a series of immuno-
suppressive effects [53, 54]. Now a variety of small mol-
ecule inhibitors targeting IDO1 have entered the clinical 
research stage [55]. SPP1, which is highly expressed in 
non-small cell lung cancer, breast cancer and colorectal 
cancer, evades tumor immunization by regulating the 
polarization of macrophages in tumor microenviron-
ment, recruiting and inhibiting the activation of T cells, 
and is related to the prognosis of patients and resistance 
of drugs [56–62]. Up-regulation of SPP1 was detected 
in plasma of patients with OC [63]. And in patients 
with recurrent ovarian cancer, the expression of SPP1 
increased in the early stage, which can detect cancer 
recurrence earlier than that of CA125 alone [64].

PI3 (code Elafin) has been confirmed that it’s highly 
expressed in HGSOC and is associated with low overall 
survival rate [65]. PI3 can reduce the sensitivity of epi-
thelial ovarian cancer (EOC) cells to cisplatin and other 
drugs, but its correlation with immune function has not 
been revealed [66]. TRIM22 could be greatly upregulated 
under the stimulations of IFN, LPS and p53 [67]. Cur-
rent research shows that TRIM22 is highly expressed in 
glioma and can promote the proliferation of tumor cells, 
while it plays an anti-cancer role in endometrial cancer 
[68, 69]. The function and mechanism of TRIM22 in 
tumor progression need to be further studied.

Past studies showed that CXCL13, IDO1, PI3, SPP1 
and TRIM22 were closely correlated with the prognosis, 
immunization and chemotherapy sensitivity of tumor. 
We constructed PTX score model to predict the sensi-
tivity of paclitaxel and CBP score model to predict the 
sensitivity of carboplatin based on the gene expressions 
of CXCL13, IDO1, PI3, SPP1 and TRIM22. The results 
showed that they could better predict the sensitivity of 
ovarian cancer patients to chemotherapeutic drugs than 
which based on single gene like IDO1, PI3 and TRIM22. 
After TCGA database was incorporated, we found that 
the overall survival rate of patients from high chemo-
therapy sensitivity group (the score was higher than the 
median) was higher, and CBP score and PTX score could 
act as independent prognostic factors together with age 
and tumor residual lesions, which indicated that PTX 
score and CBP score could be well used to predict the 
chemotherapy sensitivity and prognosis of ovarian cancer 
patients.

Conclusions
In conclusion, through comprehensive bioinformat-
ics analysis, 5 candidate genes—CXCL13, IDO1, PI3, 
SPP1 and TRIM22— were identified, which were closely 
related to the prognosis, immunocyte infiltration, 
immune checkpoints, and chemotherapy sensitivity of 

HGSOC. And based on this, two scoring models—PTX 
score and CBP score— were constructed to effectively 
predict chemotherapy sensitivity to paclitaxel and carbo-
platin and the prognosis for patients with HGSOC. Our 
exploratory study may provide potential biomarkers and 
molecular targets for chemotherapy for HGSOC, so as to 
help improve clinical outcomes of patients.
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prognostic value of age (high group (n=68) ≥ 70 years), stage (high group 
(n=277) ≥ Stage III), tumor residual lesions (high group (n=81) ≥ 10mm) 
and CBP/PTX score (high group (n=144) ≥ median value). The points 
represent the HRs, the horizontal line length represents the 95% CI of each 
group, and the vertical dashed line represents HR=1.0. f. Multivariate COX 
regression analysis showing the prognostic value of age, stage, tumor 
residual lesions and CBP/PTX score.
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